123 research outputs found

    Metal-insulator transition and electrically-driven memristive characteristics of SmNiO3 thin films

    Full text link
    The correlated oxide SmNiO3 (SNO) exhibits an insulator to metal transition (MIT) at 130 {\deg}C in bulk form. We report on synthesis and electron transport in SNO films deposited on LaAlO3 (LAO) and Si single crystals. X-ray diffraction studies show that compressively strained single-phase SNO grows epitaxially on LAO while on Si, mixed oxide phases are observed. MIT is observed in resistance-temperature measurements in films grown on both substrates, with charge transport in-plane for LAO/SNO films and out-of-plane for Si/SNO films. Electrically-driven memristive behavior is realized in LAO/SNO films, suggesting that SNO may be relevant for neuromorphic devices

    Conductivity noise study of the insulator-metal transition and phase co-existence in epitaxial samarium nickelate thin films

    Full text link
    Interaction between the lattice and the orbital degrees of freedom not only makes rare-earth nickelates unusually "bad metal", but also introduces a temperature driven insulator-metal phase transition. Here we investigate this insulator-metal phase transition in thin films of SmNiO3\mathrm{SmNiO_3} using the slow time dependent fluctuations (noise) in resistivity. The normalized magnitude of noise is found to be extremely large, being nearly eight orders of magnitude higher than thin films of common disordered metallic systems, and indicates electrical conduction via classical percolation in a spatially inhomogeneous medium. The higher order statistics of the fluctuations indicate a strong non-Gaussian component of noise close to the transition, attributing the inhomogeneity to co-existence of the metallic and insulating phases. Our experiment offers a new insight on the impact of lattice-orbital coupling on the microscopic mechanism of electron transport in the rare-earth nickelates.Comment: 5 pages, 4 figure
    corecore